

Constitutive Mechanics of the Vacuum

Companion Paper II

From Quaternion Mechanics to the Dirac Equation

Author: Phives

Affiliation: www.mechanicalmedium.com

Date: 22 December 2025

Abstract

In *Constitutive Mechanics of the Vacuum III* (CMV-III), quantum phenomena were reinterpreted as the hydrodynamic and topological behavior of a structured vacuum medium. In this companion paper, we derive the Dirac equation as the effective long-wavelength description of a rotationally elastic medium supporting stable topological defects. Starting from quaternion-valued rotational dynamics, we show that the algebraic structure underlying spin-½ behavior arises naturally from the mechanics of tethered vortices embedded in an elastic lattice. The Dirac equation is recovered not as a fundamental postulate, but as a constitutive wave equation governing coupled flow and twist modes of the vacuum.

1. Introduction

1.1 The Quantum–Mechanical Gap

Quantum mechanics successfully predicts experimental outcomes, yet its foundational objects—wavefunctions, operators, and intrinsic spin—lack a clear mechanical interpretation. In particular:

- Why does spin-½ require a 720° rotation?
- Why does the Dirac equation require complex spinors?
- Why do fermions exhibit intrinsic coupling between translation and rotation?

Within the CMV framework, these questions are approached mechanically: **quantum behavior reflects the dynamics of topological defects embedded in a structured medium.**

1.2 Scope and Claims

This paper makes a precise and limited claim:

The Dirac equation is the effective continuum description of a rotationally elastic vacuum supporting tethered vortex defects.

We do **not** replace quantum mechanics. We explain *why its structure arises*.

2. Mechanical Degrees of Freedom of the Vacuum

2.1 Translational and Rotational Fields

In a rotationally elastic medium, the local state is described by:

- Displacement field: $\mathbf{u}(\mathbf{x}, t)$
- Velocity field: $\mathbf{v} = \partial \mathbf{u} / \partial t$
- Local rotation (twist): $\boldsymbol{\omega} = \nabla \times \mathbf{u}$

For a medium capable of supporting torsion, translational flow and rotational twist are **independent but coupled** degrees of freedom.

2.2 Topological Defects and Tethering

A **fermion** is modeled as a *tethered vortex defect*:

- The core is localized
- The surrounding lattice stores rotational strain
- Complete untwisting requires a 720° rotation

This is the mechanical origin of spin- $\frac{1}{2}$ behavior (Dirac belt trick).

3. Quaternion Representation of Rotation

3.1 Why Quaternions Are Required

Rotations in three dimensions do not commute. The appropriate algebra is quaternionic, not scalar or vectorial.

A quaternion Q may be written as:

$$Q = q_0 + q_1\mathbf{i} + q_2\mathbf{j} + q_3\mathbf{k}$$

where q_0 is a scalar and $\{\mathbf{i}, \mathbf{j}, \mathbf{k}\}$ are imaginary units satisfying:

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{ijk} = -1$$

3.2 Physical Meaning of the Quaternion Field

We identify the quaternion field as a **compact representation of coupled flow and twist**:

- Scalar part \rightarrow compressional / longitudinal component
- Vector part \rightarrow rotational shear components

This structure is **physical**, not abstract.

4. Emergence of the Dirac Spinor

4.1 Decomposition into Left and Right Modes

In an elastic lattice, rotational modes naturally separate into:

- Left-handed circulation: ψ_L
- Right-handed circulation: ψ_R

These modes are dynamically distinct but mechanically coupled through lattice stiffness.

4.2 Coupling via Shear Stiffness

The coupling strength between ψ_L and ψ_R is set by the **shear modulus** S of the vacuum lattice.

In the absence of shear stiffness ($S = 0$):

- Left and right modes decouple
- Defects untie
- Mass vanishes

This anticipates the mechanical interpretation of the Higgs mechanism (Companion Paper VIII).

5. Dirac Equation as a Constitutive Wave Equation

5.1 Constitutive Form

The coupled dynamics of flow and twist in a rotationally elastic medium lead to a first-order wave equation of the form:

$$(i\hbar\gamma^\mu \partial_\mu - mc)\psi = 0$$

where:

- ψ is a **spinor encoding rotational strain and flow**
- m represents **effective added mass** from lattice coupling
- γ^μ encode quaternionic rotation generators

5.2 Interpretation of ψ

Within the CMV framework:

- ψ is **not a probability amplitude**
- $|\psi|^2$ corresponds to **local stress-energy density**
- Probability emerges only at the ensemble level (CMV-III, Sec. 8)

6. Spin, Statistics, and Exclusion

6.1 Spin- $\frac{1}{2}$ as Tethered Rotation

A 360° rotation introduces lattice twist and stored shear energy.

A 720° rotation allows complete untwisting.

This mechanical fact explains:

- Spin- $\frac{1}{2}$
- The Dirac belt trick
- The sign change of spinors

6.2 Pauli Exclusion

Two tethered vortices cannot occupy the same configuration without incompatible lattice twist. Exclusion arises from **geometric incompatibility**, not abstract antisymmetrization.

7. Relation to Standard Quantum Mechanics

The Dirac equation remains fully valid and predictive. The CMV framework:

- Does not alter its solutions
- Does not change experimental predictions
- Provides a **mechanical substrate** for its algebraic structure

Quantum mechanics appears as **effective hydrodynamics of a structured vacuum near its stability limits**.

8. Discussion

This derivation demonstrates that:

- Complex spinors reflect real rotational mechanics
- Mass arises from lattice coupling
- Spin is topological, not intrinsic
- Quantum equations encode constitutive constraints

No new postulates are introduced.

9. Conclusion

By modeling the vacuum as a rotationally elastic medium, we have shown that the Dirac equation arises naturally as the effective wave equation governing tethered vortex defects. Spin-½, mass coupling, and fermionic statistics follow directly from mechanical principles. This result closes a major conceptual gap between quantum mechanics and continuum physics within the Constitutive Vacuum framework.

References

1. Phives, *Constitutive Mechanics of the Vacuum III*, 2025.
2. Dirac, P. A. M., “The Quantum Theory of the Electron,” *Proc. Roy. Soc. A*, 1928.
3. Cartan, É., *The Theory of Spinors*, Dover, 1981.
4. Landau, L. D., & Lifshitz, E. M., *Theory of Elasticity*, Pergamon Press, 1986.
5. Frank, F. C., “On the Theory of Liquid Crystals,” *Discuss. Faraday Soc.*, 1958.