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Abstract 

In Constitutive Mechanics of the Vacuum III (CMV-III), we demonstrated that the weak-field 
predictions of General Relativity (GR) arise naturally when the physical vacuum is modeled 
as a continuous elastic medium whose shear stiffness varies under gravitational loading. In 
this companion paper, we extend that analysis to the strong-field regime. By applying 
nonlinear elasticity to a radially stressed vacuum medium, we derive the exact radial 
density and stiffness profiles required to reproduce the Schwarzschild metric without 
invoking spacetime curvature as a physical cause. We show that the Schwarzschild event 
horizon corresponds precisely to a condition of total shear stiffness collapse (constitutive 
cavitation) in the vacuum medium. Black holes are therefore interpreted not as geometric 
singularities, but as zones of material failure in an otherwise continuous constitutive 
substrate. 

 

1. Introduction 

1.1 Motivation 

General Relativity encodes gravity geometrically, describing gravitational phenomena as 
curvature of spacetime. While this description is mathematically successful, it leaves open 
the question of physical mechanism. In CMV-III, we proposed an alternative ontology: 
gravity emerges from the mechanical response of a structured vacuum medium 
characterized by density, stiffness, and stress. 

In the weak-field limit, this constitutive model reproduces all standard GR observables—
light deflection, gravitational redshift, and perihelion precession—through refractive 
effects induced by stiffness gradients. The interpretation of strong-field gravitational 



regions as constitutive failures relies on the longitudinal–transverse sector separation 
introduced in Constitutive Mechanics of the Vacuum III, Section 2.4.  The present work 
addresses the remaining open question: 

Can the same mechanical framework reproduce the exact Schwarzschild solution in 
the strong-field regime? 

 

1.2 Ontological Commitments 

Throughout this paper we adopt the following commitments, established in CMV-III: 

 The vacuum is a continuous mechanical medium 

 Geometry is diagnostic, not causal 

 Light propagates as a transverse shear wave 

 Gravitational effects arise from spatial variation of constitutive parameters 

 No new forces, fields, or entities are introduced 

 

2. Mechanical Description of the Vacuum 

2.1 Constitutive Parameters 

We characterize the vacuum by three local fields: 

 Vacuum density: 𝜌(𝑟) 

 Shear stiffness: 𝑆(𝑟) 

 Bulk modulus: 𝐾(𝑟) 

The local transverse wave speed (identified with the observed speed of light) is given by the 
standard elastic relation: 

𝑐(𝑟) = ඨ
𝑆(𝑟)

𝜌(𝑟)
 

 

In the far field (𝑟 → ∞), the vacuum approaches its unperturbed state: 

𝑆(𝑟) → 𝑆଴, 𝜌(𝑟) → 𝜌଴, 𝑐(𝑟) → 𝑐 
 



 

2.2 Optical Metric Interpretation 

Following the Gordon optical metric formalism, a spatially varying wave speed produces an 
effective metric for null propagation. For a spherically symmetric medium, the effective 
line element takes the form: 

𝑑𝑠ଶ = − ൬
𝑐(𝑟)

𝑐
൰

ଶ

𝑐ଶ𝑑𝑡ଶ + 𝑑𝑟ଶ + 𝑟ଶ𝑑Ωଶ 

 

Our task is therefore to determine the constitutive profiles 𝑆(𝑟)and 𝜌(𝑟)that reproduce the 
Schwarzschild metric coefficients. 

 

3. Constitutive Response Under Radial Stress 

3.1 Nonlinear Elasticity and the Grüneisen Parameter 

In CMV-III, we showed that a nonlinear elastic response characterized by a Grüneisen-type 
parameter 𝛾 ≈ 2yields the correct weak-field gravitational behavior. Physically, this 
corresponds to a medium in which shear stiffness decreases more rapidly than density 
under tension. 

We adopt the constitutive relation: 

𝑑ln 𝑆

𝑑ln 𝜌
= 𝛾 

 

with 𝛾 = 2in the gravitational regime. 

 

3.2 Radial Density Profile 

For a static, spherically symmetric mass 𝑀, mechanical equilibrium requires that the 
vacuum density profile satisfy: 

𝑑𝜌

𝑑𝑟
= −

𝐺𝑀

𝑐ଶ𝑟ଶ
𝜌(𝑟) 

 

Integrating yields: 



𝜌(𝑟) = 𝜌଴exp ௗ⁣ ቀ −
𝑟௦

𝑟
ቁ 

 

where 𝑟௦ =
ଶீெ

௖మ
is the Schwarzschild radius. 

 

3.3 Shear Stiffness Profile 

Applying the constitutive relation with 𝛾 = 2: 

𝑆(𝑟) = 𝑆଴exp ௗ⁣ ቀ −
2𝑟௦

𝑟
ቁ 

 

The local wave speed becomes: 

𝑐(𝑟)ଶ

𝑐ଶ
=

𝑆(𝑟)

𝜌(𝑟)
= exp ௗ⁣ ቀ −

𝑟௦

𝑟
ቁ 

 

 

4. Recovery of the Schwarzschild Metric 

Substituting the derived wave speed into the optical metric yields: 

𝑑𝑠ଶ = − ቀ1−
𝑟௦

𝑟
ቁ 𝑐ଶ𝑑𝑡ଶ + ቀ1−

𝑟௦

𝑟
ቁ

ିଵ

𝑑𝑟ଶ + 𝑟ଶ𝑑Ωଶ 

 

This is exactly the Schwarzschild metric. 

No curvature postulate was required. 
The metric emerges as a diagnostic description of wave propagation in a nonlinear 
elastic medium. 

 

5. Physical Interpretation of the Event Horizon 

5.1 Shear Collapse 

At 𝑟 = 𝑟௦: 

𝑆(𝑟௦) → 0 
 



The vacuum medium can no longer support transverse shear propagation. Since light is a 
shear wave, it cannot propagate outward beyond this radius. 

 

5.2 Black Holes as Constitutive Failure Zones 

The event horizon corresponds to a material failure threshold, not a geometric singularity. 
Inside the horizon: 

 Shear modes are extinguished 

 The medium undergoes cavitation 

 No causal signals escape, not because of spacetime curvature, but because the 
medium cannot transmit them 

This interpretation preserves all external GR predictions while eliminating the need for 
infinite curvature or density. 

 

6. Discussion 

This derivation demonstrates that: 

 Strong-field gravity is compatible with a mechanical vacuum 

 The Schwarzschild solution reflects nonlinear elasticity, not spacetime geometry 

 Event horizons are constitutive boundaries, not singularities 

The success of this approach strengthens the central claim of CMV-III: geometry is a 
consequence of mechanics, not its cause. 

 

7. Conclusion 

By extending the constitutive vacuum model into the nonlinear regime, we have derived the 
exact Schwarzschild metric from first principles of continuum mechanics. Black holes 
emerge naturally as regions of shear stiffness collapse in a stressed vacuum medium. This 
result completes the mechanical reinterpretation of gravity initiated in CMV-III and provides 
a physically grounded alternative to geometric singularities. 
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