

Constitutive Mechanics of the Vacuum

Companion Paper VIII

The Mechanical Higgs: Mass Generation via Topological Drag and Vacuum Solidification

Author: Phives

Affiliation: www.mechanicalmedium.com

Date: 23 December 2025

Abstract

In the Standard Model, particle mass arises through interaction with a scalar Higgs field via spontaneous symmetry breaking. While mathematically successful, this mechanism lacks a clear physical interpretation. In this companion paper, we reinterpret the Higgs mechanism within the Constitutive Vacuum (CV) framework. We identify the Higgs field with the background density of the vacuum medium itself and interpret symmetry breaking as a cosmological phase transition from a superfluid-like state to an elastic solid. Within this solidified vacuum, topological defects experience hydrodynamic drag and added mass. We show that particle mass corresponds to the energy required to displace and entrain the vacuum lattice during motion. The Higgs boson is identified as the scalar breathing mode of the vacuum lattice. This work does not replace the Standard Model Higgs formalism, but provides its mechanical substrate. The mechanical basis for the Higgs mode as a longitudinal (compressional) excitation governed by the vacuum bulk modulus K_v is established in Constitutive Mechanics of the Vacuum III, Section 2.4.2.

1. Introduction

1.1 The Origin of Mass

Why do some excitations of the vacuum propagate at the invariant speed c , while others resist acceleration and behave as massive particles? In the Standard Model, this distinction is encoded in the Higgs mechanism: particles acquire mass by coupling to a pervasive scalar field with a nonzero vacuum expectation value.

While this description is algebraically complete, it remains ontologically abstract. The CV framework seeks to supply the missing physical interpretation by treating the vacuum as a material medium with constitutive properties.

1.2 Scope and Discipline

This paper makes a specific and limited claim:

The Higgs mechanism describes the effective dynamics of particles interacting with a solidified vacuum medium.

We do **not** alter Standard Model predictions, gauge structure, or renormalization procedures. We interpret their physical meaning.

2. Phase State of the Vacuum

2.1 High-Temperature Regime: Superfluid Vacuum

At sufficiently high temperature or energy density, the vacuum behaves as a superfluid-like medium:

- Shear modulus $S = 0$
- No resistance to transverse deformation
- No stable topological defects
- All excitations propagate at c

In this regime, mass cannot exist.

2.2 Symmetry Breaking as Solidification

As the universe cools below a critical threshold, the vacuum undergoes a phase transition:

- Shear modulus becomes nonzero ($S \neq 0$)
- Transverse shear waves become supported
- Topological defects become trapped
- Stable matter emerges

This transition corresponds physically to **vacuum freezing**, not abstract symmetry loss.

3. Mass as Topological Drag

3.1 Added Mass in Continuum Mechanics

In fluid and solid mechanics, an object moving through a medium must accelerate not only itself, but also the surrounding material. This results in **added mass**:

$$m_{\text{eff}} = m_0 + C_d \rho_v V$$

where:

- ρ_v is the vacuum density
- V is displaced volume
- C_d is a geometric coupling factor

3.2 Application to Vacuum Defects

Within the CV framework:

- **Photons** are pure shear waves
→ no displaced volume, no drag, no mass
- **Massive particles** are topological defects
→ finite displaced volume, drag, inertia

Mass is therefore not intrinsic. It is the **cost of moving a defect through a solid vacuum**.

4. Yukawa Coupling as Geometric Interaction

In the Standard Model, particle masses scale with Yukawa couplings. Within the CV interpretation:

- Yukawa coupling corresponds to **defect geometry**
- Tighter, more volumetric defects displace more lattice
- Greater displacement yields greater inertial drag

This explains why particles with identical charges exhibit vastly different masses without invoking new fields.

5. Coupling to Spinor Dynamics

In Companion Paper II, the Dirac equation was derived as the effective wave equation governing coupled flow and twist modes of the vacuum. That derivation requires a **coupling stiffness** between left- and right-handed rotational modes.

Within the CV framework, that stiffness arises only when the vacuum has solidified. In the superfluid phase, the coupling vanishes and mass disappears.

This provides a direct mechanical interpretation of the mass term in the Dirac equation.

6. The Higgs Boson as a Lattice Mode

6.1 Scalar Breathing Mode

In condensed-matter systems, a Higgs mode corresponds to an amplitude oscillation of an order parameter. Analogously, in the CV framework:

- The Higgs boson is a **scalar longitudinal (breathing) mode**
- It represents oscillations in vacuum density
- It is not a force carrier, but a lattice excitation

6.2 Decay and Short Lifetime

Longitudinal modes in a high-stiffness lattice are strongly damped. This explains:

- The Higgs boson's short lifetime
- Its decay into particle–antiparticle pairs
- Its lack of long-range interaction

7. Relation to Standard Model Formalism

This reinterpretation preserves:

- Gauge symmetry
- Renormalization structure
- Predictive power of the Standard Model

The Higgs field remains a valid mathematical object. The CV framework explains **what it physically represents**.

8. Limitations and Non-Claims

This paper does **not** claim:

- That the Higgs field is eliminated
- That vacuum density equals the Higgs field numerically
- That particle masses can yet be calculated *ab initio*
- That cosmological phase transitions are fully modeled

It supplies **ontological grounding**, not numerical closure.

9. Discussion

Mass, inertia, and resistance to acceleration emerge naturally when topological defects interact with a solid vacuum medium. The Higgs mechanism is revealed as the effective description of this interaction, not a separate fundamental process. This perspective unifies mass generation with elasticity, topology, and phase transitions.

10. Conclusion

By interpreting symmetry breaking as vacuum solidification and particle mass as topological drag, we provide a coherent mechanical substrate for the Higgs mechanism. Mass arises not from an abstract field, but from the interaction between defects and a structured medium. The Higgs boson itself is identified as a scalar excitation of that medium. This closes the mass–inertia loop within the Constitutive Vacuum framework and integrates quantum field theory with continuum mechanics.

References

1. Phives, *Constitutive Mechanics of the Vacuum III*, 2025.
2. Higgs, P. W., “Broken Symmetries and the Masses of Gauge Bosons,” *Phys. Rev. Lett.*, 1964.
3. Anderson, P. W., “Plasmons, Gauge Invariance, and Mass,” *Phys. Rev.*, 1963.
4. Landau, L. D., & Lifshitz, E. M., *Fluid Mechanics*, Pergamon Press, 1987.
5. Volovik, G. E., *The Universe in a Helium Droplet*, Oxford, 2003.