

Constitutive Mechanics of the Vacuum II

A Stress-Flow Theory of Fields, Matter, and Geometry

Author: Phives

Affiliation: www.mechanicalmedium.com

Date: 22-Dec-2025

Abstract

We present a constitutive mechanical model of the physical vacuum, treating it as a continuous medium characterized by density, stress, stiffness, and flow. Within this framework, gravitation, electromagnetism, inertia, and quantum phenomena emerge as distinct regimes or diagnostic descriptions of the same underlying stress-flow dynamics, rather than as independent fundamental forces or geometric axioms.

By applying standard continuum mechanics at the Planck scale, we demonstrate that the weak-field predictions of General Relativity—including light deflection and perihelion precession—arise naturally from a specific constitutive response in which shear stiffness varies more rapidly than density under radial tension. This requirement corresponds to a Grüneisen parameter $\gamma \approx 2$, consistent with metallic crystalline solids.

Matter is modeled as a stable topological defect (toroidal vortex) within the medium, with mass, charge, spin, and inertia arising from displacement, circulation, and constraint of the surrounding lattice. Quantum phenomena are reinterpreted as manifestations of topological and longitudinal constraint enforcement, not probabilistic information exchange. Cosmological and high-energy anomalies are shown to correspond to material loss, failure, or misidentified diagnostic quantities rather than to new entities or breakdowns of physical law.

The resulting framework restores a material ontology beneath spacetime geometry and field abstractions, unifying gravity, electromagnetism, and quantum behavior within a single mechanical substrate that is testable, falsifiable, and continuous with known condensed-matter physics.

Part I — Ontology and Mechanical Foundations

1. Ontological Commitments

1.1 The Category Error in Modern Physics

Contemporary physics employs multiple highly successful descriptive frameworks—General Relativity, quantum field theory, and classical electromagnetism—each optimized for a particular regime. Despite their predictive power, these frameworks are ontologically inconsistent. Geometry, fields, particles, and probabilities are alternately treated as fundamental, even when they describe mutually incompatible primitives.

This inconsistency manifests as persistent anomalies: vacuum energy divergence, dark matter, dark energy, nonlocal correlations, and singularities. We argue that these anomalies do not indicate missing physics, but rather a **category error**—the elevation of diagnostic descriptions to ontological status.

A diagnostic quantity summarizes behavior; it is not the behavior itself. Treating geometry, fields, or probabilities as physically primary obscures the mechanical causes they encode.

1.2 Ontological Postulate

We adopt the following ontological stance:

Reality consists of a continuous mechanical medium characterized by density, stress, stiffness, and flow. All observed forces and fields are derived descriptions of the medium's stress-flow state.

This postulate does not introduce new mathematics or speculative entities. It restores the ontology already implicit in continuum mechanics and condensed-matter physics, extending it consistently to the vacuum.

1.3 Primitive Physical Quantities

Within this framework, only a minimal set of quantities are physically real (ontic):

- **Vacuum density:** $\rho(\mathbf{x}, t)$
- **Flow velocity:** $\mathbf{v}(\mathbf{x}, t)$
- **Stress tensor:** $\sigma(\mathbf{x}, t)$
- **Pressure** (isotropic stress): $P(\mathbf{x}, t)$
- **Shear modulus:** $S(\mathbf{x}, t)$

- **Bulk modulus:** $K(x, t)$

All other commonly used quantities—electric and magnetic fields, spacetime curvature, mass, charge, probability amplitudes—are **derived diagnostics**, useful but not fundamental.

1.4 What This Replaces

Under this ontology:

Conventional Concept Reinterpreted As

Electric field	Pressure-gradient acceleration
Magnetic field	Rotational shear (vorticity)
Charge	Net vacuum flux imbalance
Mass	Displaced volume of the medium
Inertia	Added (virtual) mass of entrained medium
Spacetime curvature	Constitutive variation of density and stiffness
Quantum probability	Constraint-consistent ensemble description

This shift does **not** discard existing equations. It explains *why* they work and *where* they fail.

2. Governing Mechanical Equations

2.1 Continuity (Mass Conservation)

The vacuum medium obeys standard mass conservation:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

This equation underlies charge conservation, flux continuity, and the impossibility of information-free signaling in quantum correlations.

2.2 Momentum Balance (Cauchy Equation)

The local momentum balance is given by:

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right) = \nabla \cdot \boldsymbol{\sigma} + \mathbf{f}_{\text{defect}}$$

Here, **defects** (matter) do not act as external forces but appear as boundary or topological constraints on the medium. This distinction is critical: particles do not *push* the vacuum; they *shape* it.

2.3 Stress Decomposition

The stress tensor is decomposed as:

$$\boldsymbol{\sigma} = -P\mathbf{I} + \boldsymbol{\tau}$$

where:

- P is isotropic pressure
- $\boldsymbol{\tau}$ is the deviatoric (shear) stress

Electromagnetic and gravitational phenomena correspond to different projections and gradients of this same tensor.

2.4 Constitutive Closure

Material behavior is specified by a constitutive relation:

$$\boldsymbol{\tau} = \mathcal{C}(\boldsymbol{\varepsilon}, \dot{\boldsymbol{\varepsilon}}, \rho, S, K, \dots)$$

No new laws are introduced. The novelty lies in recognizing that the **vacuum itself** possesses constitutive parameters and that observed “forces” reflect spatial and temporal variations of these parameters.

2.5 Regime Separation

The vacuum exhibits different effective behavior depending on scale and frequency:

Regime	Dominant Behavior
High frequency	Elastic solid (light propagation)
Kinematic	Superfluid (matter motion without drag)
Cosmological	Viscoelastic (energy dissipation / redshift)
Extreme stress	Material failure (black holes)

These regimes coexist without contradiction, just as they do in known supersolids.

Part II — Waves, Light, and Material Constants

3. Light as Transverse Shear in a Constitutive Medium

3.1 Wave Support as a Material Diagnostic

In continuum mechanics, the types of waves a medium can support are not optional assumptions; they are strict consequences of its constitutive properties. In particular:

- **Longitudinal (compressional) waves** require a finite bulk modulus K .
- **Transverse (shear) waves** require a finite shear modulus S .

Fluids and gases, possessing negligible shear stiffness ($S \approx 0$), cannot support transverse waves. Solids, by contrast, support both longitudinal and transverse modes.

The experimentally established fact that light is a **transverse wave** immediately constrains the vacuum's mechanical character: the vacuum must possess a nonzero shear modulus. Any model treating the vacuum as a purely geometric manifold or an ideal fluid fails this requirement at the most basic mechanical level.

3.2 Constitutive Wave Speed

In an elastic continuum, the propagation speed of transverse shear waves is given by the standard relation:

$$c_s = \sqrt{\frac{S}{\rho}}$$

where:

- S is the shear modulus,
- ρ is the mass density of the medium.

We identify electromagnetic radiation (light) with this transverse shear mode. Accordingly, the observed speed of light c is not a kinematic invariant imposed by spacetime geometry, but a **constitutive property** of the vacuum medium itself.

$$c \equiv \sqrt{\frac{S_v}{\rho_v}}$$

This relation is not assumed; it is enforced by mechanics.

3.3 Planck-Scale Constitutive Parameters

The vacuum's density and stiffness can be inferred directly from the Planck units, interpreted not as abstract limits but as **material scales** of the medium.

Vacuum Density

Using the Planck mass m_p distributed over the Planck volume l_p^3 :

$$\rho_v = \frac{m_p}{l_p^3} = \frac{c^5}{\hbar G^2}$$

Numerically,

$$\rho_v \approx 5.2 \times 10^{96} \text{ kg} \cdot \text{m}^{-3}$$

This value represents the **preloaded density** of the vacuum lattice, not a gravitating mass density in the Newtonian sense.

Vacuum Shear Modulus

Using the Planck force F_p acting over the Planck area l_p^2 :

$$S_v = \frac{F_p}{l_p^2} = \frac{c^7}{\hbar G^2}$$

Numerically,

$$S_v \approx 4.6 \times 10^{113} \text{ Pa}$$

This is the elastic stiffness that restores the medium following shear deformation.

3.4 Recovery of the Speed of Light

Substituting these values into the shear-wave relation:

$$\sqrt{\frac{S_v}{\rho_v}} = \sqrt{\frac{c^7/(\hbar G^2)}{c^5/(\hbar G^2)}} = \sqrt{c^2} = c$$

The speed of light is therefore **not a free constant**, nor a geometric axiom. It is the natural shear-wave speed of a medium with precisely these constitutive properties.

This result is exact, not approximate.

3.5 Physical Interpretation of “Vacuum Energy”

The enormous values of ρ_v and S_v are often cited as evidence that a material vacuum is untenable. This objection arises from a misunderstanding of what these quantities represent.

In a solid:

- **Absolute stress does not cause motion**
- **Only stress gradients produce acceleration**

The Planck-scale energy density corresponds to the **elastic preload** of the vacuum lattice, analogous to the stored energy in a highly tensioned crystal. This energy does not gravitate, radiate, or drive expansion unless gradients are introduced.

This distinction resolves the so-called vacuum energy catastrophe: the inferred energy density is stiffness, not fuel.

3.6 Regime Separation: Elastic vs. Viscoelastic Behavior

On laboratory and astronomical timescales relevant to light propagation, the vacuum behaves as an **almost perfectly elastic solid**:

- Shear losses are negligible
- Phase coherence is preserved over cosmological distances
- Transverse waves propagate without dispersion

However, no physical solid is perfectly elastic. Over extreme distances and durations, a minute **loss modulus** becomes relevant. This viscoelastic component does not affect local optics but plays a role in cosmological redshift, addressed later.

Crucially, these regimes do not contradict one another. They are scale-dependent manifestations of a single material.

3.7 Implications

This section establishes several foundational results:

1. Light's transverse nature **requires** a shear-supporting medium.
2. The speed of light emerges from S_v/ρ_v , not geometry.
3. Planck-scale quantities acquire direct physical meaning.
4. Vacuum energy is reinterpreted as elastic preload.
5. The vacuum is mechanically a **crystalline supersolid**, not empty space.

With this foundation in place, we can now treat **matter itself** as a deformation of the same medium, rather than as something embedded within it.

Part III — Defects and Matter

4. Matter as a Topological Defect in a Continuous Medium

4.1 The Necessity of Defects

In a continuous medium governed by the equations of continuum mechanics, localized, persistent structures cannot arise from linear wave motion alone. Waves propagate and disperse; they do not remain spatially bound. The existence of stable, particle-like entities therefore requires **topologically protected configurations**—states that cannot be removed by smooth deformation of the medium.

This requirement is not speculative. In classical and condensed-matter systems, such configurations are well known: vortices in superfluids, dislocations in crystals, and solitons in nonlinear media. Their defining feature is not material composition, but **topology**.

We adopt the same principle here. Matter is not something added to the vacuum; it is a **defect state of the vacuum itself**.

4.2 Toroidal Vortex Defects

The simplest stable, finite-energy defect in a superfluid or supersolid continuum is a **closed vortex ring**. Linear vortex filaments are unstable and dissipative; only closed circulation can conserve angular momentum indefinitely in the absence of viscosity.

Accordingly, we model fundamental matter as **toroidal vortex defects** embedded in the vacuum medium.

Key properties follow immediately:

- **Closure** ensures stability.
- **Circulation** replaces point singularities.
- **Topology** replaces intrinsic particle identity.

This revives, in a modern and mechanically grounded form, the vortex-atom concept originally proposed by Kelvin and Helmholtz, now supported by well-established vortex dynamics.

4.3 Mass as Displaced Volume

In this framework, mass is not an intrinsic scalar attached to a point. It is a **hydrodynamic quantity** arising from displacement of the surrounding medium.

A rotating vortex induces centrifugal acceleration in the medium, lowering the local pressure within its core. This creates a region of **rarefaction (cavitation)** whose volume is excluded from the ambient density of the vacuum.

We therefore define mass as:

$$m \equiv \rho_v V_{\text{disp}}$$

where V_{disp} is the effective displaced volume of the vacuum medium.

This definition has several immediate consequences:

- Mass is proportional to volume, not substance.
- Mass can vary with defect geometry and rotation rate.
- Mass–energy equivalence follows mechanically, not axiomatically.

Matter is thus best described as a **persistent void sustained by motion**, rather than as a lump of material.

4.4 Inertia as Added Mass

In fluid mechanics, an accelerating object must also accelerate the surrounding fluid. The resulting resistance is known as **added mass** or **virtual mass**.

The same mechanism applies here. A vortex defect accelerating through the vacuum must entrain a volume of the surrounding medium. The resistance to acceleration is therefore:

- Not intrinsic to the defect alone
- Proportional to the mass of the entrained medium

This provides a direct mechanical origin for inertia without invoking a separate inertial principle or field. Inertial mass and gravitational mass are identical because they arise from the same displaced volume of the same medium.

4.5 Charge as Flow Asymmetry

While mass corresponds to cavitation (density reduction), **charge** corresponds to **net flux imbalance**.

A vortex defect may exhibit:

- Net outward flux of the medium (source-like behavior)
- Net inward flux of the medium (sink-like behavior)

These are boundary conditions on the flow field, not independent substances. Charge conservation follows directly from the continuity equation governing the medium.

In this interpretation:

- Positive charge corresponds to net outflow
- Negative charge corresponds to net inflow
- Electric forces arise from pressure-gradient acceleration

Charge is therefore a *mode* of a defect, not a separate particle attribute.

4.6 Spin and Topological Tethering

The observed spin-½ behavior of fermions is often treated as an abstract quantum number. In a continuous medium, it emerges naturally from **topological tethering**.

A vortex defect is not isolated from the medium; it is continuous with it. Rotating such a defect by 360° introduces a shear twist in the surrounding lattice that cannot be removed without cutting the medium. Only after a 720° rotation does the configuration return to its original state.

This is the mechanical origin of the Dirac belt trick and provides a direct physical explanation for half-integer spin without invoking internal degrees of freedom.

Bosonic excitations (e.g., light), by contrast, are untethered propagating modes and therefore exhibit integer spin.

4.7 Matter as Boundary Condition, Not Force Source

A crucial conceptual distinction follows from this picture:

Matter does not exert forces on the vacuum; it imposes constraints on the vacuum's stress-flow configuration.

All interactions arise from how multiple defects jointly deform the medium. What appears as a force between particles is a **stress integral** over the medium between them.

This perspective eliminates the need for action-at-a-distance and restores locality at the mechanical level, even when correlations appear nonlocal diagnostically.

4.8 Summary of the Defect Ontology

This section establishes the following principles:

1. Matter consists of stable topological defects in a continuous medium.
2. The fundamental defect is a closed toroidal vortex.
3. Mass is displaced vacuum volume.
4. Inertia is added mass of entrained medium.
5. Charge is flow asymmetry, not substance.
6. Spin arises from topological tethering.
7. Forces are stress-mediated, not fundamental.

With matter now defined mechanically, we are prepared to examine how such defects deform the surrounding medium and produce what is observed macroscopically as **gravitation**.

Part IV — Gravitation as a Constitutive Response

5. Gravitation as a Stiffness Gradient in a Stressed Medium

5.1 From Geometry to Material Response

In General Relativity, gravitation is described as curvature of spacetime produced by stress–energy. While mathematically consistent, this description leaves unanswered what, physically, is being curved and how curvature produces force.

Within the constitutive vacuum framework, gravitation is reinterpreted as a **material response** of the vacuum medium to sustained stress imposed by matter defects.

Geometry becomes a diagnostic summary of how constitutive parameters vary spatially; it is not the underlying cause.

The central claim of this section is:

Gravitation arises from spatial gradients in the vacuum's constitutive stiffness and density induced by topological defects.

This claim is not philosophical; it is enforced by continuum mechanics.

5.2 Radial Tension Generated by Matter Defects

A toroidal vortex defect displaces vacuum density and must be continually sustained against ambient pressure. To maintain the cavitated core, the surrounding medium accelerates inward, producing a **radial tension field**.

This field has three mechanical consequences:

1. Reduced local density $\rho(r)$
2. Reduced local shear stiffness $S(r)$
3. A pressure gradient directed toward the defect

The radial dependence of these quantities is smooth and long-ranged, even though the defect core itself is microscopic.

5.3 Light Propagation in a Stressed Medium

From Section 3, light propagates as a transverse shear wave with local speed:

$$c(r) = \sqrt{\frac{S(r)}{\rho(r)}}$$

Any spatial variation in S or ρ therefore modifies the effective refractive index:

$$n(r) \equiv \frac{c_0}{c(r)}$$

Light follows paths of least optical impedance. Apparent spacetime curvature is thus reframed as **refraction through a nonuniform elastic medium**.

5.4 Weak-Field Constitutive Perturbations

In the weak-field regime, we express density and stiffness as small perturbations about their ambient values:

$$\begin{aligned}\rho(r) &= \rho_0(1 - A\Phi(r)) \\ S(r) &= S_0(1 - B\Phi(r))\end{aligned}$$

where:

- $\Phi(r) \equiv \frac{GM}{rc^2}$ is the dimensionless Newtonian potential,
- A and B are material response coefficients.

Substituting into the refractive index definition and expanding to first order:

$$n(r) \approx 1 + \frac{1}{2}(B - A)\Phi(r)$$

5.5 Matching General Relativity

General Relativity predicts, in the weak-field limit:

$$n_{\text{GR}}(r) \approx 1 + 2\Phi(r)$$

Equating the two expressions yields the constitutive condition:

$$B - A = 4$$

This is the central mechanical result: **General Relativity is recovered if stiffness decreases more rapidly than density under radial tension by a factor of four.**

No geometric assumptions are required.

5.6 Material Interpretation of the Constitutive Condition

The condition $B - A = 4$ is not arbitrary. It corresponds to a **Grüneisen parameter**:

$$\gamma \equiv \frac{\partial \ln S}{\partial \ln \rho} \approx 2$$

This value is characteristic of crystalline metals and stiff lattices under tension. The vacuum, in this sense, behaves mechanically like an ultra-stiff, tensioned crystalline solid.

This correspondence is remarkable: the vacuum's inferred elastic response lies squarely within known material behavior, not outside it.

5.7 Gravity as Refraction, Not Force

In this framework:

- Massive objects do not attract.
- They **soften** the surrounding medium.
- Trajectories curve because wave and defect propagation favor regions of lower stiffness.

Test particles follow paths of least resistance through the vacuum lattice. The universality of free fall follows immediately: all defects respond to the same constitutive gradients.

5.8 Gravitational Redshift and Time Dilation

Local clocks are physical processes governed by the same elastic medium. In a region of reduced stiffness, all oscillatory processes slow uniformly.

Time dilation therefore arises from **local changes in material response**, not from warping of an abstract time dimension. The gravitational redshift follows from the same refractive mechanism affecting light propagation.

5.9 Stress–Energy Without Singular Sources

In General Relativity, stress–energy is introduced as an external tensor $T_{\mu\nu}$ sourcing curvature. Here, stress is intrinsic: it is the stress of the medium itself.

There are:

- No point masses
- No infinite densities

- No singular sources

All quantities remain finite, distributed, and mechanically interpretable.

5.10 Summary of Gravitational Mechanics

This section establishes that:

1. Gravitation is a constitutive response of the vacuum.
2. Matter defects generate radial tension fields.
3. Light bending arises from refraction, not curvature.
4. Weak-field GR is recovered when $B - A = 4$.
5. The required material response is physically reasonable.
6. Time dilation and redshift follow mechanically.
7. Singularities are avoided by construction.

With gravity now grounded mechanically, we can address **inertia, relativistic dynamics, and the equivalence principle** without additional postulates.

6. Inertia, Relativistic Dynamics, and the Equivalence Principle

6.1 The Problem of Inertia in Conventional Physics

In classical mechanics, inertia is treated as an intrinsic property of mass: objects resist acceleration in proportion to their mass. General Relativity preserves this notion while geometrizing it, asserting that free motion follows geodesics in curved spacetime. Neither framework explains *why* mass resists acceleration.

Quantum field theory likewise assigns inertia through mass parameters without mechanical interpretation. In all cases, inertia appears as a primitive rather than a consequence.

Within the constitutive vacuum framework, this is unacceptable. If the vacuum is a material medium, inertia must arise from interaction with that medium.

6.2 Inertia as Hydrodynamic Resistance

A toroidal vortex defect accelerating through the vacuum must reorganize the surrounding stress-flow field. Because the vacuum has finite density and stiffness, this reorganization cannot occur instantaneously.

Two effects contribute to inertial resistance:

1. **Added (virtual) mass** — the defect must accelerate a volume of surrounding medium.
2. **Stress accumulation** — accelerated motion steepens stress gradients ahead of the defect.

Both effects are standard in fluid and elastic media and require no new postulates.

6.3 Effective Inertial Mass

The effective inertial mass is therefore

$$m_{\text{eff}} = m_0 + m_{\text{added}}, m_0 = \rho_v V_{\text{disp}}.$$

Inertia is the energetic cost of accelerating stress within the medium. It is not an intrinsic attribute of the defect, but a property of the defect–medium system.

6.4 Finite Stress Propagation and Relativistic Dynamics

Stress propagates through the vacuum at the shear-wave speed

$$c = \sqrt{\frac{S_v}{\rho_v}}.$$

At low velocities ($v \ll c$), stress redistribution is quasi-static and Newtonian dynamics applies. As velocity approaches c , stress cannot relax rapidly enough, producing a rapidly increasing resistance to further acceleration.

The resulting velocity dependence of inertial response takes the familiar form

$$m(v) = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}.$$

This expression is not postulated. It reflects the same stress-accumulation behavior observed near the sound barrier in ordinary media.

6.5 The Speed Limit as a Material Constraint

The impossibility of reaching or exceeding c is therefore a **material limitation**, not a geometric prohibition. Exceeding c would require stress reconfiguration faster than the medium permits, implying unbounded energy input and unphysical stress accumulation.

The relativistic speed limit is the maximum stress-transport capability of the vacuum lattice.

6.6 The Equivalence Principle as a Material Identity

The equivalence of inertial and gravitational mass is often treated as an unexplained empirical fact. In the constitutive vacuum framework, it is unavoidable.

- **Gravitational mass** measures how strongly a defect perturbs the medium, producing stiffness gradients.
- **Inertial mass** measures how strongly the same defect resists acceleration due to entrained medium.

Both depend on the same displaced volume:

$$m_g = m_i = \rho_v V_{\text{disp}}.$$

The equivalence principle is therefore not a coincidence but a material identity.

6.7 Free Fall as Stress Relaxation

A defect in free fall experiences no local force. It follows a trajectory that minimizes stress gradients in the surrounding medium. Free fall corresponds to **passive stress relaxation**, explaining the universality of gravitational acceleration.

6.8 Emergent Lorentz Invariance in a Constitutive Medium

A frequent objection to material vacuum models is that a solid or lattice appears to define a preferred rest frame, seemingly contradicting Lorentz invariance and the null results of Michelson–Morley–type experiments.

This objection conflates **kinematic motion** with **mechanically observable motion**. In continuum mechanics, only stress, strain, and their gradients are observable. Uniform translation produces none.

The fundamental dynamical equation governing transverse disturbances of the vacuum is the shear-wave equation,

$$\frac{\partial^2 \xi}{\partial t^2} = c^2 \nabla^2 \xi, c = \sqrt{\frac{S_v}{\rho_v}}.$$

This equation is invariant under Lorentz transformations with invariant speed c . As in relativistic elasticity and analog-gravity systems, Lorentz symmetry emerges as a **dynamical symmetry of wave propagation**, independent of the underlying microstructure.

Uniform motion relative to the vacuum lattice produces no stress and therefore no observable effect. Only acceleration or spatial gradients generate measurable responses.

6.9 Michelson–Morley Experiments Reinterpreted

Interferometric experiments do not compare matter to an abstract background; they compare physical systems to themselves. In the constitutive vacuum framework:

- Measuring rods and clocks are defects embedded in the same medium as light.
- Any stress-induced modification of wave propagation also modifies the physical dimensions and oscillation rates of the apparatus.
- Length contraction and time dilation are real mechanical effects arising from altered stress states.

Because both matter and radiation respond to the same constitutive parameters S_v and ρ_v , interferometric measurements yield null results to all tested orders.

The Michelson–Morley null result therefore supports—not contradicts—the existence of a shared medium.

6.10 Time Dilation as Material Retardation

All clocks are physical processes governed by local material response. In regions of increased stress or reduced stiffness, oscillatory processes slow uniformly.

Velocity-induced and gravitational time dilation arise from the same mechanism: altered stress-flow conditions in the vacuum medium.

6.11 Summary of Inertial and Relativistic Mechanics

This section establishes that:

1. Inertia arises from hydrodynamic resistance.
2. Relativistic mass increase reflects stress accumulation.
3. The speed limit c is a material constraint.
4. Gravitational and inertial mass are identical by construction.
5. Free fall corresponds to stress relaxation.
6. Lorentz invariance emerges from the shear-wave equation.
7. Length contraction and time dilation are physical effects.

With inertia, gravitation, and relativity unified mechanically, we turn next to **electromagnetism**, where directional and frame-dependent forces arise from rotational stress-flow.

Part V — Electromagnetism as Stress-Flow Dynamics

7. Electromagnetism as Vorticity and Stress Transport in the Vacuum

7.1 Why Electromagnetism Must Be Reinterpreted

Electromagnetism differs phenomenologically from gravitation in three key ways:

1. It exhibits both attraction and repulsion.
2. Its effects depend on relative motion (frame dependence).

3. It couples directionally rather than universally.

These features have historically motivated the introduction of independent electric and magnetic fields, governed by Maxwell's equations and mediated by abstract field quantities.

Within the constitutive vacuum framework, these same features arise naturally once **rotational flow and shear polarization** of the medium are admitted. No new ontology is required.

7.2 Charge as a Flow Boundary Condition

As established in Section 4, matter defects are vortex structures embedded in the vacuum medium. In addition to circulation, a defect may impose a **net volumetric flux imbalance** on the surrounding flow.

We define electric charge mechanically as:

$$q \equiv \oint_S \rho_v \mathbf{v} \cdot d\mathbf{A}$$

where the integral is taken over a closed surface enclosing the defect.

Under this definition:

- **Positive charge** corresponds to net outflow of the medium.
- **Negative charge** corresponds to net inflow of the medium.

Charge conservation follows immediately from the continuity equation. There is no independent conservation law.

7.3 Electric Fields as Pressure-Gradient Acceleration

A net flux imposed by a defect produces a radially symmetric flow field at distances large compared to the defect core. By conservation of flux:

$$\rho_v v(r) \cdot 4\pi r^2 = q$$

yielding:

$$v(r) = \frac{q}{4\pi\rho_v r^2}$$

This flow induces a pressure gradient via Bernoulli's relation. The acceleration experienced by a second defect in this gradient is:

$$\mathbf{a} = -\frac{\nabla P}{\rho_v}$$

We therefore identify the electric field as a derived quantity:

$$\mathbf{E} \equiv -\frac{\nabla P}{\rho_v}$$

Electric forces are pressure-gradient accelerations, not interactions between charges.

7.4 Coulomb's Law as Flux Geometry

Because the pressure gradient falls off as $1/r^2$, the resulting force between two charged defects follows the inverse-square law automatically.

Attraction and repulsion are explained mechanically:

- Like charges (two sources or two sinks) increase pressure between defects \rightarrow repulsion.
- Opposite charges (source–sink pair) reduce pressure between defects \rightarrow attraction.

No additional force postulate is required.

7.5 Magnetic Fields as Rotational Shear

When a charged defect moves relative to the medium, or when circulation is present without net flux, the surrounding flow develops **rotational shear**.

We define the magnetic field mechanically as:

$$\mathbf{B} \equiv \frac{1}{\rho_v} \nabla \times (\rho_v \mathbf{v})$$

In regions of uniform density, this reduces to ordinary vorticity.

Magnetic phenomena therefore correspond to **stored circulation** of the vacuum medium, not to a distinct field substance.

7.6 The Lorentz Force as Hydrodynamic Lift

A defect moving with velocity \mathbf{u} through a region of rotational shear experiences a transverse force analogous to the Magnus or Kutta–Joukowski lift in fluid mechanics.

The resulting acceleration is:

$$\mathbf{a} = \mathbf{E} + \mathbf{u} \times \mathbf{B}$$

This is precisely the Lorentz force law, now understood as a hydrodynamic effect arising from interaction between defect motion and background shear.

7.7 Frame Dependence and Field Mixing

In conventional electromagnetism, electric and magnetic fields transform into one another under Lorentz transformations. This behavior is often treated as mysterious or purely geometric.

In the constitutive vacuum framework, this mixing reflects a simple physical fact:

Pressure gradients and shear flows are not invariantly separable under changes of reference frame.

A boost redistributes flow between divergence and vorticity components. The electric–magnetic distinction is therefore **diagnostic**, not ontological.

7.8 Maxwell's Equations as Continuity Identities

With the identifications above:

- Gauss's law expresses flux conservation.
- Faraday's law expresses circulation induction.
- The displacement current reflects time-dependent compression of the medium.

- Ampère's law expresses vorticity generation by flow.

Maxwell's equations emerge as **kinematic identities** of an incompressible, low-loss continuum subject to the continuity and momentum equations already introduced.

Nothing is added; nothing is removed.

7.9 Radiation as Transverse Shear Emission

Electromagnetic radiation corresponds to propagating transverse shear waves emitted by time-varying circulation and pressure gradients.

This is fully consistent with Section 3:

- Radiation propagates at $c = \sqrt{S_v/\rho_v}$
- Energy and momentum are carried by elastic deformation
- Polarization reflects shear orientation

Light is therefore not an independent entity, but a propagating stress mode of the vacuum medium.

7.10 Summary of Electromagnetic Mechanics

This section establishes that:

1. Charge is a flow boundary condition.
2. Electric fields are pressure-gradient accelerations.
3. Magnetic fields are rotational shear.
4. The Lorentz force is hydrodynamic lift.
5. Maxwell's equations encode continuity and circulation.
6. Radiation is transverse shear propagation.
7. Field duality reflects frame-dependent flow decomposition.

With gravitation, inertia, and electromagnetism now unified mechanically, the remaining question concerns **quantum phenomena**, where discreteness, probability, and nonlocal correlation appear to challenge any classical medium description.

Part VI — Quantum Phenomena as Topological and Constraint Effects

8. Quantum Phenomena in a Constitutive Medium

8.1 Why Quantum Mechanics Appears Fundamentally Different

Quantum mechanics is often regarded as a radical departure from classical physics because it introduces:

1. Discreteness (quantization),
2. Probabilistic outcomes,
3. Wave–particle duality,
4. Nonlocal correlations (entanglement).

These features appear incompatible with any continuous mechanical description. As a result, quantum theory is frequently treated as irreducibly abstract, with probability amplitudes elevated to ontological status.

Within the constitutive vacuum framework, this conclusion is unnecessary. When matter is modeled as a **topologically constrained defect embedded in a continuous medium**, the above features arise naturally as *effective descriptions* of deeper mechanical behavior.

8.2 Particles as Solitonic Defects

As established in Section 4, matter consists of stable toroidal vortex defects. Such defects are neither point-like nor extended rigid objects; they are **solitonic configurations** whose identity is preserved by topology rather than by material boundaries.

This has two immediate implications:

- The defect core is localized.
- The surrounding medium is continuously disturbed over a much larger region.

The “wavefunction” associated with a particle therefore corresponds physically to the **distributed stress–flow field** surrounding the defect, not to an abstract probability amplitude.

8.3 Wave–Particle Duality as Medium Coupling

In this framework, wave–particle duality is not paradoxical. It reflects two coupled aspects of the same object:

- The **vortex core**, which follows a definite trajectory.
- The **pilot disturbance**, which propagates through the medium and interacts with boundaries.

The core’s motion is guided by gradients in its own surrounding stress field. This mechanism is directly analogous to pilot-wave hydrodynamics observed in macroscopic fluid systems, where droplets guided by self-generated waves reproduce interference, tunneling-like behavior, and quantized orbits.

No intrinsic randomness is required at the fundamental level.

8.4 Quantization from Boundary and Stability Conditions

Quantization arises whenever a continuous medium supports **standing modes constrained by topology and boundary conditions**.

For vortex defects embedded in an elastic lattice:

- Only discrete circulation strengths are dynamically stable.
- Only certain standing-wave patterns of the surrounding stress field can self-reinforce.
- Continuous variation leads to dissipation or decay.

This is directly analogous to quantization in musical instruments, waveguides, and crystalline lattices. The discreteness reflects **mode selection**, not fundamental granularity of nature.

8.5 Spin as a Topological Constraint (Revisited)

The spin-½ behavior of fermions is often cited as evidence that quantum objects lack classical analogs. In a continuous medium, however, spin emerges from **topological tethering**.

A vortex defect is embedded in and continuous with the surrounding lattice. A single 360° rotation introduces an unrecoverable shear twist in the medium. Only after a 720° rotation does the system return to its original configuration.

This behavior is a purely mechanical consequence of continuity and does not require intrinsic internal degrees of freedom.

8.6 Measurement as a Physical Interaction

In standard quantum mechanics, measurement is treated as a special process involving wavefunction collapse. Within a constitutive medium, measurement is simply a **strong interaction with the environment**.

A measuring apparatus:

- Introduces dissipation,
- Imposes boundary conditions,
- Breaks coherence of the surrounding stress field.

As a result, the solitonic defect transitions from a wave-guided regime to a classical trajectory regime. The apparent “collapse” corresponds to **loss of coherent pilot structure**, not to an instantaneous nonphysical process.

8.7 Probability as Ensemble Description

Although the underlying dynamics are deterministic, outcomes are highly sensitive to initial and environmental conditions. Small perturbations in the medium lead to divergent trajectories, especially in chaotic or strongly constrained regions.

Probability therefore enters as an **ensemble description**, summarizing the distribution of possible outcomes when microscopic conditions are not controlled.

The Born rule reflects the density of accessible flow pathways in the surrounding medium, not intrinsic randomness.

8.8 Entanglement as Longitudinal Constraint Enforcement

Quantum entanglement presents the strongest apparent challenge to locality. Within the constitutive vacuum framework, it is reinterpreted as a **constraint phenomenon**, not a signaling mechanism.

An elastic medium supports:

- Transverse (shear) modes, which carry energy and information at speed c ,
- Longitudinal (compressional) modes, which enforce global consistency of the medium.

In a nearly incompressible medium ($K \gg S$), longitudinal stress equilibrates rapidly to enforce constraints, without transporting energy or information.

Entangled particles correspond to **topologically linked defects** whose combined stress configuration must satisfy global constraints. Measurement alters local boundary conditions, and the medium re-equilibrates to preserve consistency.

No signal is transmitted.

8.9 No-Signaling and Causality Preservation

Although constraint enforcement appears nonlocal, causality is preserved:

- Energy transport is limited by shear-wave propagation at speed c .
- Constraint fields cannot be independently modulated.
- Measurement outcomes cannot be controlled to encode information.

This is directly analogous to pressure fields in incompressible fluids, which adjust instantaneously to maintain continuity but cannot be used for communication.

8.10 Summary of Quantum Interpretation

Within the constitutive vacuum framework:

1. Particles are solitonic defects.
2. Wavefunctions correspond to distributed stress fields.
3. Quantization reflects mode stability.
4. Spin arises from topological tethering.

5. Measurement is dissipative interaction.
6. Probability is ensemble-level description.
7. Entanglement enforces global constraints without signaling.

Quantum mechanics is therefore not an exception to mechanical reasoning. It is the **effective hydrodynamics of a structured medium operating near its stability limits**.

Part VII — Cosmology and Failure Modes of the Vacuum Medium

9. Cosmology as the Long-Timescale Response of a Constitutive Medium

9.1 Cosmology as a Regime Test, Not a New Ontology

Cosmology probes the vacuum medium at extreme length and time scales. Any misinterpretation of diagnostic quantities as physical causes accumulates over these scales and manifests as apparent anomalies: dark energy, dark matter, horizon problems, and singularities.

Within the constitutive vacuum (CV) framework, cosmology does not require new physical entities or laws. It is the **long-duration, low-frequency response** of the same medium responsible for inertia, gravitation, electromagnetism, and quantum phenomena.

Accordingly, cosmological anomalies are treated here as indicators of **material regime transitions**, not as evidence for additional substances.

9.2 Regime Separation of Vacuum Behavior

The constitutive vacuum exhibits different effective behavior depending on frequency and scale:

Regime	Effective Behavior
Laboratory / Astrophysical	Nearly ideal elastic solid
Galactic	Elastic with weak inertial entrainment
Cosmological	Weakly viscoelastic

Regime	Effective Behavior
Extreme stress	Constitutive failure
This separation is essential. The vacuum is not assumed to be viscoelastic at all scales; rather, viscoelastic effects are negligible locally and become relevant only when integrated over cosmological distances.	

9.3 Redshift as a Composite Phenomenon

In standard cosmology, redshift is interpreted entirely as a kinematic effect arising from metric expansion. This interpretation is mathematically consistent but not unique.

In a material medium, wave propagation over billions of light-years necessarily samples **non-ideal behavior**, even when local losses are vanishingly small. We therefore decompose observed redshift as:

$$z_{\text{obs}} = z_{\text{kinematic}} + z_{\text{viscoelastic}}$$

where:

- $z_{\text{kinematic}}$ arises from cosmic expansion and produces the observed time dilation,
- $z_{\text{viscoelastic}}$ arises from cumulative energy loss of transverse shear waves propagating through a medium with a small but finite loss modulus.

This formulation explicitly **preserves expansion** and does not revive classical “tired light” models.

9.4 Consistency with Supernova Time Dilation

Classical tired-light models are ruled out by the observed time dilation of Type Ia supernova light curves, which scale as $(1+z)$. This confirms that cosmological expansion is real.

The CV framework does not dispute this result. Instead, it identifies a **secondary contribution** to redshift that affects photon energy but not emission timescales.

In this picture:

- Time dilation arises from expansion ($z_{\text{kinematic}}$),

- Apparent over-dimming at high redshift arises from viscoelastic attenuation ($z_{\text{viscoelastic}}$).

The inference of accelerated expansion (dark energy) depends on assuming that $z_{\text{obs}} = z_{\text{kinematic}}$. Relaxing this assumption opens an alternative interpretation.

9.5 Apparent Acceleration Without Dark Energy

Observations of distant supernovae suggest accelerated expansion when interpreted using purely kinematic redshift. In the CV framework:

- Distance estimates based solely on $z_{\text{kinematic}}$ are biased high if $z_{\text{viscoelastic}} \neq 0$,
- This bias grows with propagation distance,
- The resulting Hubble diagram mimics acceleration even if the expansion rate is constant.

This does not claim that dark energy is absent. It asserts that **its necessity is inference-dependent** and must be demonstrated independently of propagation effects.

9.6 Frequency Dependence as a Falsifiability Criterion

A decisive difference between expansion-induced redshift and viscoelastic attenuation is **chromaticity**.

- Metric expansion is achromatic.
- Viscoelastic attenuation generically introduces weak frequency dependence.

The CV framework therefore makes a falsifiable prediction:

If redshift contains a viscoelastic component, high-energy photons (e.g., from gamma-ray bursts) should exhibit slight but systematic deviations in redshift or attenuation relative to low-energy photons at the same source redshift.

Absence of such effects at sufficient sensitivity would directly constrain or falsify the model.

9.7 Dark Matter Phenomenology as Medium Inertia

Flat galactic rotation curves and extended gravitational lensing halos are conventionally attributed to unseen particulate matter.

In the CV framework, these effects arise from **medium inertia**.

A rotating galaxy entrains a volume of the surrounding vacuum medium. The inertial response of this entrained medium contributes to effective mass without introducing additional particles.

This produces:

- Flat rotation curves correlated with angular momentum,
- Extended lensing halos without particulate mass,
- Scaling relations consistent with observed baryonic–halo correlations.

The “halo” is not matter; it is **rotating vacuum**.

9.8 Horizons and Black Holes as Constitutive Failure

As gravitational stress increases near compact objects, the vacuum’s shear modulus S_v decreases. The local wave speed

$$c(r) = \sqrt{\frac{S_v(r)}{\rho_v(r)}}$$

drops accordingly. At a critical threshold, transverse waves can no longer propagate.

This defines an **event horizon** as a stiffness-failure surface, not a geometric singularity.

Beyond this surface:

- Shear support collapses,
- No propagating modes exist,
- Classical spacetime descriptions lose physical meaning.

Black holes are therefore **cavitation zones** in the vacuum medium, not regions of infinite curvature.

9.9 Early-Universe Interpretation

At early times, the vacuum medium existed under extreme stress and temperature. In this regime:

- Constitutive parameters were likely time-dependent,
- Phase transitions of the medium are expected,
- Symmetry breaking corresponds to changes in defect admissibility.

This perspective accommodates inflationary phenomenology while reinterpreting it as **material relaxation**, not exponential geometric expansion.

9.10 Summary of Cosmological Implications

This section establishes that:

1. Cosmology probes long-timescale material behavior.
2. Redshift may contain a subdominant viscoelastic component.
3. Expansion and time dilation are preserved.
4. Apparent acceleration is inference-dependent.
5. Dark matter effects arise from medium inertia.
6. Horizons represent stiffness failure.
7. Black holes avoid singularities by construction.
8. The framework is decisively falsifiable via chromatic redshift tests.

Cosmology thus becomes a continuation of continuum mechanics, not a domain requiring new substances or dimensions.

Transition

With cosmology reframed conservatively and testably, we now turn to a final synthesis: what this framework replaces, explains, predicts—and how it can be wrong.

Part VIII — Synthesis, Scope, and Falsifiability

10. Synthesis, Scope, and Falsifiability

10.1 What the Constitutive Vacuum Framework Replaces

The constitutive vacuum (CV) framework does not discard the mathematical structures of modern physics. It replaces their **ontological interpretation**.

Specifically, it replaces:

- **Spacetime curvature as a physical cause**
→ with spatial variation of constitutive parameters (density and stiffness).
- **Electric and magnetic fields as fundamental substances**
→ with pressure gradients and rotational shear in a continuous medium.
- **Point particles as primitive entities**
→ with topologically stable defect states of the vacuum.
- **Intrinsic mass and charge**
→ with displaced volume and flow boundary conditions.
- **Probabilistic ontology**
→ with ensemble descriptions of constrained, deterministic dynamics.

In all cases, the operational equations of General Relativity, electromagnetism, and quantum mechanics are preserved. What changes is what those equations are *about*.

10.2 What the Framework Explains Mechanically

Within a single material ontology, the CV framework provides mechanical explanations for:

- Universality of free fall as response to common stiffness gradients.
- Equivalence of inertial and gravitational mass as displaced vacuum volume.
- Relativistic mass increase and speed limit as stress-transport constraints.
- Electric attraction and repulsion as pressure redistribution from flux imbalance.
- Magnetic forces as hydrodynamic lift from rotational shear.
- Spin-½ behavior as topological tethering.
- Quantum interference as wave-guided defect motion.

- Entanglement as global constraint enforcement without signaling.
- Absence of singularities as material failure rather than divergence.

These explanations do not require additional particles, dimensions, or nonlocal mechanisms.

10.3 Relationship to Established Theories

The CV framework is **interpretively conservative**:

- General Relativity emerges as the geometric description of constitutive optics.
- Maxwell's equations arise as continuity and circulation identities.
- Quantum mechanics remains a valid effective theory of constrained solitons.
- Lorentz invariance emerges dynamically from the shear-wave equation.

The framework is therefore not a competing formalism, but a **mechanical substrate** beneath existing ones.

10.4 What This Framework Explicitly Does Not Claim

To avoid overreach, we emphasize the following limitations:

- It does not derive the full particle spectrum.
- It does not replace quantum field theory.
- It does not predict superluminal signaling.
- It does not assert observable violations of Lorentz invariance.
- It does not claim experimental confirmation beyond existing constraints.
- It does not propose reactionless propulsion or free energy.

The CV framework is a **mechanical reinterpretation**, not a completed theory of everything.

10.5 Testable Predictions and Experimental Handles

Despite its interpretive nature, the framework makes **distinct, falsifiable predictions**:

1. Stress-Dependent Optical Properties

Local modification of vacuum stiffness (e.g., strong Casimir confinement) should produce small, measurable refractive or inertial effects.

2. Tensorial Gravitational Refraction

Anisotropic stress states (e.g., rotating masses) should induce birefringence or polarization-dependent light propagation beyond standard GR predictions.

3. Chromatic Cosmological Attenuation

If a viscoelastic redshift component exists, high-energy photons (e.g., GRBs) should exhibit slight but systematic deviations relative to low-energy photons at identical source redshift.

4. Defect-Stability Constraints at High Energy

At extreme stress densities, scattering behavior should deviate in a manner consistent with constitutive softening rather than new particle thresholds.

Failure to observe these effects at sufficient sensitivity would directly constrain or falsify the framework.

10.6 A Design Rule for Physical Admissibility

A guiding principle follows from the material ontology:

Any proposed physical effect must correspond to a stable defect, a propagating mode, or a constitutive gradient of the vacuum medium.

Phenomena that cannot be mapped to these mechanisms are not physically admissible within this framework.

10.7 Scientific Status

The constitutive vacuum framework satisfies the core criteria of scientific legitimacy:

- It is mechanically grounded.
- It preserves known mathematics.
- It reduces ontological complexity.
- It produces falsifiable predictions.
- It avoids singularities by construction.

It may be wrong—but it is wrong in a way that can be tested.

10.8 Final Statement

Modern physics has accumulated extraordinary mathematical tools while progressively abstracting away physical mechanism. The constitutive vacuum framework proposes that this trend has reached diminishing returns.

By restoring a material ontology beneath spacetime geometry and field abstractions, gravitation, electromagnetism, inertia, and quantum phenomena emerge as **different diagnostic regimes of the same stress–flow dynamics**.

If nature admits such a description, then spacetime, fields, and particles are not fundamental entities, but coherent ways of reading the behavior of a structured medium under stress.

References

Foundations: Continuum Mechanics & Elastic Media

1. Landau, L. D., & Lifshitz, E. M.
Theory of Elasticity, 3rd ed.
Butterworth-Heinemann, Oxford (1986).
2. Love, A. E. H.
A Treatise on the Mathematical Theory of Elasticity, 4th ed.
Cambridge University Press (1927).
3. Eringen, A. C.
Continuum Mechanics and Theory of Materials.
Wiley, New York (1976).
4. Graff, K. F.
Wave Motion in Elastic Solids.
Dover Publications (1991).

Relativistic Elasticity & Emergent Lorentz Symmetry

5. Kleinert, H.
Gauge Fields in Condensed Matter, Vol. II: Stresses and Defects.
World Scientific (1989).
6. Kijowski, J., & Magli, G.
“Relativistic Elasticity and the Geometry of Continua.”
Journal of Geometry and Physics **9**, 207–223 (1992).
7. Volovik, G. E.
The Universe in a Helium Droplet.
Oxford University Press (2003).
8. Barceló, C., Liberati, S., & Visser, M.
“Analogue Gravity.”
Living Reviews in Relativity **14**, 3 (2011).

Optical–Mechanical Analogy & Polarizable Vacuum

9. Eddington, A. S.
Space, Time and Gravitation.
Cambridge University Press (1920).
10. Dicke, R. H.
“Gravitation without a Principle of Equivalence.”
Reviews of Modern Physics **29**, 363–376 (1957).
11. Puthoff, H. E.
“Gravity as a Zero-Point-Fluctuation Force.”
Physical Review A **39**, 2333–2342 (1989).
12. Puthoff, H. E.
“Polarizable-Vacuum Approach to General Relativity.”
Foundations of Physics **32**, 927–943 (2002).
13. Visser, M.
“Acoustic Black Holes: Horizons, Ergospheres, and Hawking Radiation.”
Classical and Quantum Gravity **15**, 1767–1791 (1998).

Condensed Matter: Grüneisen Parameter & Lattice Response

14. Grüneisen, E.
“Theorie des festen Zustandes einatomiger Elemente.”
Annalen der Physik **344**, 257–306 (1912).
15. Wallace, D. C.
Thermodynamics of Crystals.
Dover Publications (1998).
16. Kittel, C.
Introduction to Solid State Physics, 8th ed.
Wiley (2005).
17. Murnaghan, F. D.
“Finite Deformations of an Elastic Solid.”
American Journal of Mathematics **59**, 235–260 (1937).

Vortices, Defects, and Topological Matter Models

18. Kelvin, Lord (W. Thomson).
“On Vortex Atoms.”
Proceedings of the Royal Society of Edinburgh **6**, 94–105 (1867).
19. Helmholtz, H.
“On Integrals of the Hydrodynamical Equations.”
Journal für die reine und angewandte Mathematik **55**, 25–55 (1858).
20. Skyrme, T. H. R.
“A Unified Field Theory of Mesons and Baryons.”
Nuclear Physics **31**, 556–569 (1962).
21. Rybakov, F. N., et al.
“New Type of Stable Particlelike States in Chiral Magnets.”
Physical Review Letters **115**, 117201 (2015).

Hydrodynamic Quantum Analogs

22. Couder, Y., & Fort, E.
“Single-Particle Diffraction and Interference at a Macroscopic Scale.”
Physical Review Letters **97**, 154101 (2006).

23. Bush, J. W. M.
“Pilot-Wave Hydrodynamics.”
Annual Review of Fluid Mechanics **47**, 269–292 (2015).
24. Harris, D. M., & Bush, J. W. M.
“Droplets Walking in a Rotating Frame.”
Journal of Fluid Mechanics **739**, 444–464 (2014).

Quantum Foundations & Entanglement

25. Bell, J. S.
“On the Einstein Podolsky Rosen Paradox.”
Physics **1**, 195–200 (1964).
26. Shimony, A.
“Events and Processes in the Quantum World.”
Quantum Concepts in Space and Time.
Oxford University Press (1986).
27. Wharton, K. B., & Argaman, N.
“Colloquium: Bell’s Theorem and Locally Mediated Determinism.”
Reviews of Modern Physics **92**, 021002 (2020).

Cosmology, Redshift, and Observational Constraints

28. Riess, A. G., et al.
“Observational Evidence from Supernovae for an Accelerating Universe.”
Astronomical Journal **116**, 1009–1038 (1998).
29. Betoule, M., et al.
“Improved Cosmological Constraints from a Joint Analysis of the SDSS-II and SNLS Supernova Samples.”
Astronomy & Astrophysics **568**, A22 (2014).
30. Riess, A. G., et al.
“Type Ia Supernova Distances at Redshift > 1.5.”
Astrophysical Journal **853**, 126 (2018).
31. Milgrom, M.
“A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden

Mass Hypothesis.”
Astrophysical Journal **270**, 365–370 (1983).

32. Klinkhamer, F. R., & Volovik, G. E.
“Self-Tuning Vacuum Variable and Cosmological Constant.”
Physical Review D **77**, 085015 (2008).

Experimental & Proposed Tests

33. Casimir, H. B. G.
“On the Attraction Between Two Perfectly Conducting Plates.”
Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen **51**, 793–795 (1948).

34. Lamoreaux, S. K.
“Demonstration of the Casimir Force in the 0.6 to 6 μm Range.”
Physical Review Letters **78**, 5–8 (1997).

35. Amelino-Camelia, G., et al.
“Tests of Quantum Gravity from Observations of Gamma-Ray Bursts.”
Nature **393**, 763–765 (1998).

36. Kostelecký, V. A., & Russell, N.
“Data Tables for Lorentz and CPT Violation.”
Reviews of Modern Physics **83**, 11–31 (2011).